Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Total OH Reactivity Measurements in a Suburban Site of Shanghai

Gan Yang, Juntao Huo, Lihong Wang, Yuwei Wang, Shijian Wu, Lei Yao, Qingyan Fu and Lin Wang
Journal of Geophysical Research: Atmospheres 127 (11) (2022)
https://doi.org/10.1029/2021JD035981

Dual Fuel Reaction Mechanism 2.0 including NOx Formation and Laminar Flame Speed Calculations Using Methane/Propane/n-Heptane Fuel Blends

Sebastian Schuh and Franz Winter
Energies 13 (4) 778 (2020)
https://doi.org/10.3390/en13040778

Time-Resolved Laser-Flash Photolysis Faraday Rotation Spectrometer: A New Tool for Total OH Reactivity Measurement and Free Radical Kinetics Research

Nana Wei, Bo Fang, Weixiong Zhao, et al.
Analytical Chemistry 92 (6) 4334 (2020)
https://doi.org/10.1021/acs.analchem.9b05117

A Novel Dual Fuel Reaction Mechanism for Ignition in Natural Gas–Diesel Combustion

Sebastian Schuh, Jens Frühhaber, Thomas Lauer and Franz Winter
Energies 12 (22) 4396 (2019)
https://doi.org/10.3390/en12224396

Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity

Zhaofeng Tan, Keding Lu, Meiqing Jiang, et al.
Science of The Total Environment 636 775 (2018)
https://doi.org/10.1016/j.scitotenv.2018.04.286

How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China

Yudong Yang, Min Shao, Stephan Keßel, et al.
Atmospheric Chemistry and Physics 17 (11) 7127 (2017)
https://doi.org/10.5194/acp-17-7127-2017

Opposite OH reactivity and ozone cycles in the Amazon rainforest and megacity Beijing: Subversion of biospheric oxidant control by anthropogenic emissions

Jonathan Williams, Stephan U. Keßel, Anke C. Nölscher, et al.
Atmospheric Environment 125 112 (2016)
https://doi.org/10.1016/j.atmosenv.2015.11.007

Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes

D. F. Zhao, M. Kaminski, P. Schlag, et al.
Atmospheric Chemistry and Physics 15 (2) 991 (2015)
https://doi.org/10.5194/acp-15-991-2015

Detailed characterizations of a Comparative Reactivity Method (CRM) instrument: experiments vs. modelling

V. Michoud, R. F. Hansen, N. Locoge, P. S. Stevens and S. Dusanter
Atmospheric Measurement Techniques Discussions 8 (4) 3803 (2015)
https://doi.org/10.5194/amtd-8-3803-2015

Intercomparison of two Comparative Reactivity Method instruments in the Mediterranean basin during summer 2013

N. Zannoni, S. Dusanter, V. Gros, et al.
Atmospheric Measurement Techniques Discussions 8 (5) 5065 (2015)
https://doi.org/10.5194/amtd-8-5065-2015

Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013

N. Zannoni, S. Dusanter, V. Gros, et al.
Atmospheric Measurement Techniques 8 (9) 3851 (2015)
https://doi.org/10.5194/amt-8-3851-2015

Group Additive Kinetics for Hydrogen Transfer Between Oxygenates

Paschalis D. Paraskevas, Maarten K. Sabbe, Marie-Françoise Reyniers, Nikos G. Papayannakos and Guy B. Marin
The Journal of Physical Chemistry A 119 (27) 6961 (2015)
https://doi.org/10.1021/acs.jpca.5b01668

Detailed characterizations of the new Mines Douai comparative reactivity method instrument via laboratory experiments and modeling

V. Michoud, R. F. Hansen, N. Locoge, P. S. Stevens and S. Dusanter
Atmospheric Measurement Techniques 8 (8) 3537 (2015)
https://doi.org/10.5194/amt-8-3537-2015

Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

S. Nehr, B. Bohn, H.-P. Dorn, et al.
Atmospheric Chemistry and Physics Discussions 14 (5) 5535 (2014)
https://doi.org/10.5194/acpd-14-5535-2014

Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

S. Nehr, B. Bohn, H.-P. Dorn, et al.
Atmospheric Chemistry and Physics 14 (13) 6941 (2014)
https://doi.org/10.5194/acp-14-6941-2014

Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

A. C. Nölscher, V. Sinha, S. Bockisch, T. Klüpfel and J. Williams
Atmospheric Measurement Techniques 5 (12) 2981 (2012)
https://doi.org/10.5194/amt-5-2981-2012

A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

A. C. Nölscher, V. Sinha, S. Bockisch, T. Klüpfel and J. Williams
Atmospheric Measurement Techniques Discussions 5 (3) 3575 (2012)
https://doi.org/10.5194/amtd-5-3575-2012

Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results

S. Lou, F. Holland, F. Rohrer, et al.
Atmospheric Chemistry and Physics 10 (22) 11243 (2010)
https://doi.org/10.5194/acp-10-11243-2010

A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere

T. Ingham, A. Goddard, L. K. Whalley, et al.
Atmospheric Measurement Techniques 2 (2) 465 (2009)
https://doi.org/10.5194/amt-2-465-2009

A flow-tube based laser-induced fluorescence instrument to measure OH reactivity in the troposphere

T. Ingham, A. Goddard, L. K. Whalley, et al.
Atmospheric Measurement Techniques Discussions 2 (2) 621 (2009)
https://doi.org/10.5194/amtd-2-621-2009

Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results

S. Lou, F. Holland, F. Rohrer, et al.
Atmospheric Chemistry and Physics Discussions 9 (4) 17035 (2009)
https://doi.org/10.5194/acpd-9-17035-2009

Detection of Hydrogen Peroxide Using Photofragmentation Laser-Induced Fluorescence

O. Johansson, J. Bood, M. Aldén and U. Lindblad
Applied Spectroscopy 62 (1) 66 (2008)
https://doi.org/10.1366/000370208783412618

Atmospheric lifetime as a probe of radical chemistry in the boundary layer

Nadine Bell, Dwayne E. Heard, Michael J. Pilling and Alison S. Tomlin
Atmospheric Environment 37 (16) 2193 (2003)
https://doi.org/10.1016/S1352-2310(03)00157-2

Total VOC reactivity in the planetary boundary layer: 1. Estimation by a pump and probe OH experiment

Francois Jeanneret, Frank Kirchner, Alain Clappier, Hubert van den Bergh and Bertrand Calpini
Journal of Geophysical Research: Atmospheres 106 (D3) 3083 (2001)
https://doi.org/10.1029/2000JD900602

Total VOC reactivity in the planetary boundary layer: 2. A new indicator for determining the sensitivity of the ozone production to VOC and NOx

Frank Kirchner, Francois Jeanneret, Alain Clappier, Bernd Krüger, Hubert van den Bergh and Bertrand Calpini
Journal of Geophysical Research: Atmospheres 106 (D3) 3095 (2001)
https://doi.org/10.1029/2000JD900603