Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A novel bio-facilitated synthesis of GO/ZnO/Ag nanocomposite via Citrulline Lanatus and OPEFB for enhanced photocatalytic degradation of imidacloprid: Kinetics, mechanism and byproduct analysis

Saima Khan Afridi and Khalid Umar
Journal of Water Process Engineering 72 107603 (2025)
https://doi.org/10.1016/j.jwpe.2025.107603

Reduced Graphene Oxide/Waste-Derived TiO2 Composite Membranes: Preliminary Study of a New Material for Hybrid Wastewater Treatment

Andrea Basso Peressut, Cinzia Cristiani, Giovanni Dotelli, et al.
Nanomaterials 13 (6) 1043 (2023)
https://doi.org/10.3390/nano13061043

In silico ecotoxicity assessment of photoinduced imidacloprid degradation using HPLC–HRMS, QSAR and ecotoxicity equivalents

Melanie Voigt, Victoria Langerbein and Martin Jaeger
Environmental Sciences Europe 34 (1) (2022)
https://doi.org/10.1186/s12302-022-00616-0

Optimization of imidacloprid photocatalytic degradation under UVA‐LED irradiation conditions

Marina Duplančić, Kristina Liber, Ivana Elizabeta Zelić, Vanja Kosar and Vesna Tomašić
Journal of Chemical Technology & Biotechnology 97 (10) 2775 (2022)
https://doi.org/10.1002/jctb.7146

Advanced Solid State Nano-Electrochemical Sensors and System for Agri 4.0 Applications

Ian Seymour, Tarun Narayan, Niamh Creedon, Kathleen Kennedy, Aidan Murphy, Riona Sayers, Emer Kennedy, Ivan O’Connell, James F. Rohan and Alan O’Riordan
Sensors 21 (9) 3149 (2021)
https://doi.org/10.3390/s21093149

Effect of intensifying additives on the degradation of thiamethoxam using ultrasound cavitation

P.B. Patil, S. Raut-Jadhav and A.B. Pandit
Ultrasonics Sonochemistry 70 105310 (2021)
https://doi.org/10.1016/j.ultsonch.2020.105310

Pesticide degradation on solid surfaces: a moisture dependent process governed by the interaction between TiO2 and H2O

Wenda Yang, Zhongwen Wang, Bin Yang, et al.
New Journal of Chemistry 45 (26) 11803 (2021)
https://doi.org/10.1039/D1NJ02368C

Comparative removal of imidacloprid, bisphenol‐S, and azithromycin with ferrate and FeCl3 and assessment of the resulting toxicity

Shaoqing Zhang and Jia‐Qian Jiang
Journal of Chemical Technology & Biotechnology 96 (1) 99 (2021)
https://doi.org/10.1002/jctb.6515

Off–on sensor based on concentration-dependent multicolor fluorescent carbon dots for detecting pesticides

Nikta Alvandi, Sara Assariha, Neda Esfandiari and Reza Jafari
Nano-Structures & Nano-Objects 26 100706 (2021)
https://doi.org/10.1016/j.nanoso.2021.100706

Photocatalytic degradation of imidacloprid using semiconductor hybrid nano-catalyst: kinetics, surface reactions and degradation pathways

R. Garg, R. Gupta and A. Bansal
International Journal of Environmental Science and Technology 18 (6) 1425 (2021)
https://doi.org/10.1007/s13762-020-02866-y

A comparison study of applying natural iron minerals and zero-valent metals as Fenton-like catalysts for the removal of imidacloprid

Siwan Liu, Wenwei Yu, Huang Cai, et al.
Environmental Science and Pollution Research 28 (31) 42217 (2021)
https://doi.org/10.1007/s11356-021-13731-x

Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light

Peng Zhang, Yifei Shao, Xuejing Xu, Peng Huang and Hongwen Sun
Science of The Total Environment 724 137913 (2020)
https://doi.org/10.1016/j.scitotenv.2020.137913

CeO2 for Water Remediation: Comparison of Various Advanced Oxidation Processes

Roberto Fiorenza, Stefano Andrea Balsamo, Luisa D’Urso, Salvatore Sciré, Maria Violetta Brundo, Roberta Pecoraro, Elena Maria Scalisi, Vittorio Privitera and Giuliana Impellizzeri
Catalysts 10 (4) 446 (2020)
https://doi.org/10.3390/catal10040446

Highly Sensitive SERS Detection of Neonicotinoid Pesticides. Complete Raman Spectral Assignment of Clothianidin and Imidacloprid

Niamh Creedon, Pierre Lovera, Julio Gutierrez Moreno, Michael Nolan and Alan O’Riordan
The Journal of Physical Chemistry A 124 (36) 7238 (2020)
https://doi.org/10.1021/acs.jpca.0c02832

A comparative study for the removal of imidacloprid insecticide from water by chemical-less UVC, UVC/TiO2 and UVC/ZnO processes

Khadije Yari, Abdolmotaleb Seidmohammadi, Mohammad Khazaei, Amit Bhatnagar and Mostafa Leili
Journal of Environmental Health Science and Engineering 17 (1) 337 (2019)
https://doi.org/10.1007/s40201-019-00352-3

Photocatalytic, photolytic and radiolytic elimination of imidacloprid from aqueous solution: Reaction mechanism, efficiency and economic considerations

Georgina Rózsa, Máté Náfrádi, Tünde Alapi, et al.
Applied Catalysis B: Environmental 250 429 (2019)
https://doi.org/10.1016/j.apcatb.2019.01.065

Photocatalytic Degradation of Chlothianidin: Effect of Humic Acids, Nitrates, and Oxygen

M. B. Kralj, E. G. Dilcan, G. Salihoğlu, et al.
Journal of Analytical Chemistry 74 (14) 1371 (2019)
https://doi.org/10.1134/S1061934819140077

Short‐term Detection of Imidacloprid in Streams after Applications in Forests

Greg Wiggins, Elizabeth Benton, Jerome Grant, Marie Kerr and Paris Lambdin
Journal of Environmental Quality 47 (3) 571 (2018)
https://doi.org/10.2134/jeq2017.11.0446

Fluidized-bed Fenton treatment of imidacloprid: Optimization and degradation pathway

Carl Francis Z. Lacson, Mark Daniel G. de Luna, Chengdi Dong, Sergi Garcia-Segura and Ming-Chun Lu
Sustainable Environment Research 28 (6) 309 (2018)
https://doi.org/10.1016/j.serj.2018.09.001

The effect of titanium dioxide nanoparticles and UV irradiation on photocatalytic degradation of Imidaclopride

Hadi Ahmari, Saeed Zeinali Heris and Mohammad Hassanzadeh Khayyat
Environmental Technology 39 (4) 536 (2018)
https://doi.org/10.1080/09593330.2017.1306115

The vibrational properties of the bee-killer imidacloprid insecticide: A molecular description

Antônio A.G. Moreira, Pedro De Lima-Neto, Ewerton W.S. Caetano, Ito L. Barroso-Neto and Valder N. Freire
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 185 245 (2017)
https://doi.org/10.1016/j.saa.2017.05.051

Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries

Chaitanya Sarangapani, Grainne O'Toole, P.J. Cullen and Paula Bourke
Innovative Food Science & Emerging Technologies 44 235 (2017)
https://doi.org/10.1016/j.ifset.2017.02.012

Risk assessment of imidacloprid use in forest settings on the aquatic macroinvertebrate community

Elizabeth P. Benton, Jerome F. Grant, Rebecca J. Nichols, R. Jesse Webster, John S. Schwartz and Joseph K. Bailey
Environmental Toxicology and Chemistry 36 (11) 3108 (2017)
https://doi.org/10.1002/etc.3887

Consequences of imidacloprid treatments for hemlock woolly adelgid on stream water quality in the southern Appalachians

E.P. Benton, J.F. Grant, T.C. Mueller, R.J. Webster and R.J. Nichols
Forest Ecology and Management 360 152 (2016)
https://doi.org/10.1016/j.foreco.2015.10.028

Isolation and Characterization of a Novel Imidacloprid-Degrading Mycobacterium sp. Strain MK6 from an Egyptian Soil

Mahrous M. Kandil, Carmen Trigo, William C. Koskinen and Michael J. Sadowsky
Journal of Agricultural and Food Chemistry 63 (19) 4721 (2015)
https://doi.org/10.1021/acs.jafc.5b00754

Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies

Srđan G Aćimović, Anthony H VanWoerkom, Pablo D Reeb, et al.
Pest Management Science 70 (11) 1751 (2014)
https://doi.org/10.1002/ps.3747

Degradation of imidacloprid containing wastewaters using ultrasound based treatment strategies

Amar L. Patil, Pankaj N. Patil and Parag R. Gogate
Ultrasonics Sonochemistry 21 (5) 1778 (2014)
https://doi.org/10.1016/j.ultsonch.2014.02.029

Synergetic effect of combination of AOP's (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide

Sunita Raut-Jadhav, Virendra Kumar Saharan, Dipak Pinjari, et al.
Journal of Hazardous Materials 261 139 (2013)
https://doi.org/10.1016/j.jhazmat.2013.07.012

Renewable silver-amalgam film electrode for voltammetric monitoring of solar photodegradation of imidacloprid in the presence of Fe/TiO2 and TiO2 catalysts

Valéria Guzsvány, Jelena Petrović, Jugoslav Krstić, et al.
Journal of Electroanalytical Chemistry 699 33 (2013)
https://doi.org/10.1016/j.jelechem.2013.04.003

Intensification of degradation of imidacloprid in aqueous solutions by combination of hydrodynamic cavitation with various advanced oxidation processes (AOPs)

Sunita Raut-Jadhav, Virendra K. Saharan, Dipak V. Pinjari, et al.
Journal of Environmental Chemical Engineering 1 (4) 850 (2013)
https://doi.org/10.1016/j.jece.2013.07.029

The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

Inderpreet Singh Grover, Satnam Singh and Bonamali Pal
Applied Surface Science 280 366 (2013)
https://doi.org/10.1016/j.apsusc.2013.04.163

Photocatalytic degradation of imidacloprid in aqueous suspension of TiO2 supported on H-ZSM-5

Jianshe Tang, Xin Huang, Xianhuai Huang, Li Xiang and Qizhao Wang
Environmental Earth Sciences 66 (2) 441 (2012)
https://doi.org/10.1007/s12665-011-1251-1

Renewable Silver-Amalgam Film Electrode for Direct Cathodic SWV Determination of Clothianidin, Nitenpyram and Thiacloprid Neonicotinoid Insecticides Reducible in a Fairly Negative Potential Range

Mariola Brycht, Olga Vajdle, Jasmina Zbiljić, Zsigmond Papp, Valéria Guzsvány and Sławomira Skrzypek
International Journal of Electrochemical Science 7 (11) 10652 (2012)
https://doi.org/10.1016/S1452-3981(23)16892-1

Liquid chromatography-mass spectrometry identification of imidacloprid photolysis products

Tao Ding, David Jacobs and Barry K. Lavine
Microchemical Journal 99 (2) 535 (2011)
https://doi.org/10.1016/j.microc.2011.07.005

Phototransformation of imidacloprid on isolated tomato fruit cuticles and on tomato fruits

Nicole Schippers and Wolfgang Schwack
Journal of Photochemistry and Photobiology B: Biology 98 (1) 57 (2010)
https://doi.org/10.1016/j.jphotobiol.2009.11.004

Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions

V. Kitsiou, N. Filippidis, D. Mantzavinos and I. Poulios
Applied Catalysis B: Environmental 86 (1-2) 27 (2009)
https://doi.org/10.1016/j.apcatb.2008.07.018

Comparison of different iron-based catalysts for photocatalytic removal of imidacloprid

Valéria Guzsvány, Nemanja Banić, Zsigmond Papp, Ferenc Gaál and Biljana Abramović
Reaction Kinetics, Mechanisms and Catalysis (2009)
https://doi.org/10.1007/s11144-009-0106-1

Monitoring of Photocatalytic Degradation of Selected Neonicotinoid Insecticides by Cathodic Voltammetry with a Bismuth Film Electrode

Valéria Guzsvány, Mihály Kádár, Zsigmond Papp, Luka Bjelica, Ferenc Gaál and Klára Tóth
Electroanalysis 20 (3) 291 (2008)
https://doi.org/10.1002/elan.200704057

Photochemistry of Imidacloprid in Model Systems

Nicole Schippers and Wolfgang Schwack
Journal of Agricultural and Food Chemistry 56 (17) 8023 (2008)
https://doi.org/10.1021/jf801251u

Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis

Urh Černigoj, Urška Lavrenčič Štangar and Polonca Trebše
Applied Catalysis B: Environmental 75 (3-4) 229 (2007)
https://doi.org/10.1016/j.apcatb.2007.04.014

A Comparative Study of Supported TiO2 as Photocatalyst in Water Decontamination at Solar Pilot Plant Scale

Mahmut Kus, Wolfgang Gernjak, Pilar Fernández Ibáñez, et al.
Journal of Solar Energy Engineering 128 (3) 331 (2006)
https://doi.org/10.1115/1.2210494

Determination of imidacloprid and its metabolite 6-chloronicotinic acid in greenhouse air by application of micellar electrokinetic capillary chromatography with solid-phase extraction

A. Segura Carretero, C. Cruces-Blanco, S. Pérez Durán and A. Fernández Gutiérrez
Journal of Chromatography A 1003 (1-2) 189 (2003)
https://doi.org/10.1016/S0021-9673(03)00835-5

Photocatalysis with solar energy at a pilot-plant scale: an overview

Sixto Malato, Julián Blanco, Alfonso Vidal and Christoph Richter
Applied Catalysis B: Environmental 37 (1) 1 (2002)
https://doi.org/10.1016/S0926-3373(01)00315-0

Photo-oxidative degradation of insecticide dichlorovos by a combined semiconductors and organic sensitizers in aqueous media

S.A Naman, Z.A.-A Khammas and F.M Hussein
Journal of Photochemistry and Photobiology A: Chemistry 153 (1-3) 229 (2002)
https://doi.org/10.1016/S1010-6030(02)00235-6

Degradation of Imidacloprid in Water by Photo-Fenton and TiO2 Photocatalysis at a Solar Pilot Plant:  A Comparative Study

S. Malato, J. Caceres, A. Agüera, et al.
Environmental Science & Technology 35 (21) 4359 (2001)
https://doi.org/10.1021/es000289k

Optimization of pre-industrial solar photocatalytic mineralization of commercial pesticides

Sixto Malato, Julián Blanco, Christoph Richter and Manuel I Maldonado
Applied Catalysis B: Environmental 25 (1) 31 (2000)
https://doi.org/10.1016/S0926-3373(99)00114-9

Relationship between TiO2 particle size and reactor diameter in solar photoreactors efficiency

P Fernández-Ibáñez, S Malato and F.J de las Nieves
Catalysis Today 54 (2-3) 195 (1999)
https://doi.org/10.1016/S0920-5861(99)00182-0