
Introduction

The interaction with specific biological targets (enzymes,
transporters, ion channels, or receptors) is responsible for the
therapeutic action of a large number of drugs. In the past,
drug discovery was mainly the result of chance discovery
and massive screening of large corporate libraries of syn-
thesized or naturally-occurring compounds. Nowadays, this
time-consuming and expensive process uses various tech-
niques of computer-aided ligand design [1,2]. This rational
approach to the design of ligand-receptor interaction was
made possible by the recent advances in various fields of

computational chemistry, such as molecular graphics, mole-
cular mechanics, quantum chemistry, molecular dynamics,
library searching, prediction of physical, chemical, and bio-
logical properties. An important step in ligand design is to
find a lead, a compound that binds to the target receptor.
Leads can be generated using techniques of de novoligand
design or can be discovered by in vitro screening of large
corporate libraries. We have to mention that the lead identi-
fication is only the beginning of a long and expensive
process that eventually yields a commercial drug. A lead
may have a low affinity for the target receptor, may be too
unstable in solution, too toxic, too rapidly eliminated or
metabolized, too difficult or expensive to synthesize in large
quantities. Because the screening procedures generally give
leads that are not suitable as commercial drugs, these com-
pounds have to be optimized using various techniques of
computer-aided ligand design. The availability of three-
dimensional (3D) structural information of biological recep-
tors and their complexes with various ligands can be
extremely useful in suggesting ways to improve the affinity
of the lead to the target. Because in many cases such
detailed structural information is still unavailable, the drug
design process must rely upon a more indirect approach, the
quantitative structure-activity relationships (QSAR)
approach [3-23].

In the absence of detailed structural data upon biological
receptors, a QSAR model establishes a statistical relation-
ship between the biological activity exerted by a series of
compounds and a set of parameters determined from the
structures of the compounds [1,2]. The central assumption
of a QSAR model is that the numerical value of a specified
biological activity measured for a set of molecules depends
on the structure of these molecules. In order to correlate with
a QSAR model the biological activity and the molecular
structure, the structure must be adequately described in a
numerical form with a large variety of structural descriptors
[1,2]: empirical (Hammett and Taft substituent constants),
physical properties (octanol-water partition coefficient,
dipole moment, aqueous solubility), constitutional (counts of
various molecular subgraphs), topological indices, 
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The in vitro or in vivo interaction between chem-
ical compounds and their biological targets
(transporters, receptors, ion channels, enzymes)
can be efficiently predicted with the 3D QSAR
models introduced in recent years. In this paper
we describe CoRSA (comparative receptor sur-
face analysis), a novel 3D QSAR algorithm that
can be applied to compute structure-activity
equations whenever the structure of the biologi-
cal target is not known. Using the common steric
and electrostatic features of the most active
members of a series of compounds, CoRSA gen-
erates a virtual receptor model, represented as
points on a surface complementary to the van
der Waals surface of the set of compounds. The
structural descriptors of the model are repre-
sented by the total interaction energies between
each surface point of the virtual receptor and all
atoms in a molecule. These descriptors are used
in a partial least squares (PLS) data analysis to
generate a structure-activity model. A highly sig-
nificant CoRSA model was obtained for a set of
compounds that act as calcium channel agonists
for the guinea pig left atrium assay.
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geometrical descriptors (molecular surface and volume),
quantum (atomic charges, HOMO and LUMO energies),
molecular fields (steric, electrostatic, and hydrophobic)
[3,6,16,21] or molecular similarity indices [18,19].

Usually, the effect of a drug is a result of its noncovalent
interaction with a specific site on a biological target.
Frequently, in ligand design one determines the experimen-
tal activity for the interaction between a ligand and a bio-
logical target without any information on the structure of the
active site. Using the experimental activity for a set of com-
pounds that have a high affinity for the active site, one can
generate a virtual receptor site that models the ligand-recep-
tor interactions [6,16,17]. A 3D QSAR equation based on a
virtual receptor model should give good predictions that can
guide the synthesis of new compounds with a good affinity
for the investigated receptor. Although a precise definition
of 3D QSAR is still lacking, we can identify two compo-
nents that are essential for this type of models. The first
component in the definition of a 3D QSAR model is the
computation of the structural descriptors from the three-
dimensional molecular structure; various geometrical, quan-
tum, or molecular field descriptors were proposed in recent
years. The second component in a 3D QSAR model is an
explicit mathematical structure-activity relationship estab-
lished between a dependent variable (biological activity) and
a set of independent variables (3D structural descriptors); the
mathematical 3D QSAR equations can be computed with the
help of a large number of statistical models, such as multi-
linear regression, partial least squares (PLS), or neural net-
works. From the various 3D QSAR models proposed for the
construction of a virtual receptor based on the structures and
activities of known ligand molecules [1-23], the compara-
tive molecular field analysis (CoMFA) [6,7] model gained a
widespread recognition. The CoMFA procedure consists of
the following steps: all molecules in the study set are super-
imposed (aligned); the aligned molecules are placed in a box
that is larger in all directions than the volume occupied by
the superimposed compounds; the box is partitioned into a
grid with points separated usually by 2 Å; various probe
atoms are used to compute for each molecule the steric and
electrostatic fields in every grid point; the molecular fields
are correlated with the biological data by applying the PLS
analysis to the field values from the grid points; the CoMFA
model is tested for prediction usually with the leave-one-out
cross-validation method. In 3D QSAR investigations, the
molecular grid contains regions of highly intercorrelated
descriptors, and PLS is an efficient algorithm to extract the
structural information and correlate it with a biological
activity. However, a major drawback of the PLS model is
the detrimental influence of structural descriptors that are
not correlated with the investigated property; the use of such
descriptors adds noise to the model and lowers the statisti-
cal quality of the calibration and prediction QSAR equa-
tions. An efficient variable selection method, GOLPE (gen-
erating optimal linear PLS estimations), was recently
proposed [22,23]; this algorithm gives 3D QSAR models
with better calibration and prediction results, and signifi-
cantly reduces the number of structural descriptors used in
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the computation of the PLS equations. In this way, the time
needed to establish a 3D QSAR model is greatly decreased,
because only significant variables are considered in calcula-
tion.

In the present paper we describe a 3D QSAR procedure
that generates a virtual receptor represented as points on a
surface (unlike in CoMFA and related algorithms, where the
points are places into a 3D box). The comparative receptor
surface analysis (CoRSA) is developed in three steps. In the
first one, the surface of the virtual receptor is generated
using the most active members of a series of compounds.
Then, the structural descriptors of the model are determined
by computing the total interaction energies between each
surface point of the virtual receptor and all atoms in a mol-
ecule. In the third step a partial least squares (PLS) data
analysis uses the set of structural descriptors to generate a
structure-activity model. CoRSA is applied to a set of com-
pounds that act as calcium channel agonists on guinea pig
left atrium, giving good calibration and prediction results.

Comparative receptor surface analysis

The development of a comparative receptor surface analysis
model consists of the following steps:

(1) The geometry of all molecules in the study set is opti-
mized with molecular mechanics or quantum mechanics
methods. Any information regarding the active confor-
mations of the ligands in the actual receptor must be
used to optimize the appropriate molecular geometry.

(2) All optimized molecules are aligned (superimposed)
using some pharmacophore hypothesis. The CoRSA
model depends on the molecules alignment and errors
in this step can provide 3D-QSAR models that have a
low predictive power. Several alignment assumptions
have to be investigated in order to identify the best
model.

(3) A subset of the most active molecules is selected to gen-
erate the virtual receptor model.

(4) A virtual receptor is generated using information on the
geometry, volume, atomic charges, hydrophobicity,
hydrogen bonding, or other properties of the aligned
molecules. Unlike real receptors, the virtual receptor is
not formed by atoms. One or more active molecules are
used to generate the three-dimensional receptor surface
and to establish the properties of each point on the
receptor surface; these compounds form the receptor
generation set (RGS) of molecules. The central assump-
tion is the complementarity between the shape and prop-
erties of these molecules and the virtual receptor. The
three-dimensional receptor surface is represented by
points that posses certain properties (charge, hydropho-
bicity, hydrogen bonding propensity). The coordinates of
these points are generated from the shape field of the
RGS molecules.



(5) Each surface point from the virtual receptor contains
information about the local properties of the receptor.
These properties include electrostatic potential, partial
charge, hydrophobicity, and hydrogen-bonding propen-
sity. This information is used to compute the interaction
energy between the virtual receptor and a molecule. The
surface point properties are complementary to those
exhibited by the RGS molecules.

(6) With the virtual receptor model defined in steps (1)-(5),
the ligand-receptor interaction of a set of molecules is
evaluated by computing their interaction energy with the
virtual receptor. For a molecule a set of descriptors is
formed by computing the interaction energy between
each surface point from the virtual receptor and the
atoms in the molecule. These descriptors are stored in a
QSAR table together with the biological activity of the
investigated molecule.

(7) The resulting QSAR table, that can contain several hun-
dred descriptors for each molecule, is used to develop a
3D-QSAR model using the PLS algorithm.

In the present paper the virtual receptor is generated with
the receptor surface model proposed by Hahn [16,17], but
any other algorithm that generates a receptor model can be
used. We present some details of the algorithm that gener-
ates the receptor surface.

A steric surface representing the virtual receptor is gen-
erated to enclose the set of aligned molecules. The surface
of the virtual receptor is generated by a volumetric field
(shape field), characterizing molecular shape, which is pro-
duced for each aligned molecule. The shape fields from each
individual molecule are combined to produce a final volu-
metric shape field from which an explicit surface is gener-
ated. First, a three-dimensional regularly spaced grid is
superposed over the aligned set of molecules; the grid box
dimensions are extended several Å in each direction from
the coordinates of every molecule. The steric field is com-
puted for each point of the grid, and an isosurface of the
field is used to generate the surface of the virtual receptor.
Two field functions are used to create the shape of the vir-
tual receptor, namely the van der Waals field function and
the Wyvill field function. Each field source corresponds to
an atom. The van der Waals field function generated by the
atom i from a molecule is:

V(ri j ) i = ri j – rVDW, i (1)

where ri j is the distance from the atom i and the grid point
j and rVDW, i is the van der Waals radius of the atom i. This
field function, which is computed for every grid point, has
the property that inside the van der Waals volume the value
is negative, outside the volume the value is positive, and at
the van der Waals surface the value V(r) is zero. If a grid
point contains a shape field value computed for a different
atom, the smaller of the two values is assigned to that grid
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point. The Wyvill function is a bounded function that decays
completely in a finite distance R:

(2)

where ri j is the distance from the atom i and the grid point
j. A field value is the sum of the field values contributed by
each atom; if a grid point is outside of R, its shape field
value is not computed. The value of R depends on the atom
type, and usually its value is twice the van der Waals radius
of the atom i. This function has the properties that V(0) = 1,
V(R) = 0, and V(R/2) = 1/2. Using the shape field values the
marching cubes isosurface algorithm produces a set of tri-
angulated surface points representing the surface of the vir-
tual receptor. The default grid spacing of 0.5 Å yields an
average surface density of 6 points/Å2. This gives an aver-
age distance between neighboring points (points in the same
triangle) of about 0.47 Å.

After a surface is created, several properties of the virtual
receptor associated with each surface point are assigned;
these properties include partial charge, electrostatic poten-
tial, hydrogen-bonding propensity, and hydrophobicity.
These values are used when calculating interaction energy
between a molecule and a surface model.

CoRSA model of calcium channel 
agonist activity

The transmission of electric signals in excitable cells such
as nerve or muscle uses voltage-gated ion channels that
allow ions to traverse the lipid bilayer surrounding a cell.
These ion channels are characterized by a high selectivity,
each type of ion channel allowing only one specific ion to
traverse it; for example, potassium channels transport only
K+ ions through the membrane. A novel class of calcium
channel-modulating compounds, representing alkyl or
cycloalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-pyridyl-5-
pyridinecarboxylates, were recently discovered [24,25].
Their in vitro activities as calcium channel modulators were
determined with guinea pig ileum longitudinal smooth mus-
cle (GPILSM) and guinea pig left atrium (GPLA). In this
series of compounds, the 2-pyridyl isomers act as GPLA
agonists and GPILSM antagonists, while the 3-pyridyl and
4-pyridyl isomers act as calcium channel agonists on both
GPLA and GPILSM. In this section we present the devel-
opment of a CoRSA model for the calcium channel GPLA
agonists [25].

Data set

The structure and in vitro activities of the 13 alkyl or
cycloalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-pyridyl-5-
pyridinecarboxylates is presented in table I. The log(1/EC50)
data were used as dependent variables in the PLS model.

V rij i
= –

4 rij
6

9 R6
+

17 rij
4

9 R4
–

22 rij
2

9 R2
+ 1



Computational and modeling tools

Computer modeling was done using a Silicon Graphics
Indigo/R10000 computer running under the IRIX 6.0 oper-
ating system. The molecules were constructed using the
Cerius2 3D-Sketcher and minimized with the CVFF95 force
field using the conjugated gradient algorithm. The alignment
of the molecules, the computation of the receptor surface
model with the Hahn algorithm [16,17], and the PLS analy-
sis were done with the corresponding modules from Cerius2

[26]. All computations were performed at the Centre de
Modélisation et d’Imagerie Moléculaire de l’Université de
Nice-Sophia Antipolis (France).

Alignment rule

The most active compound 5 was selected as alignment tar-
get, giving good calibration and prediction models. A view
of all the aligned compounds 1-13 is offered in figure 1.

Virtual receptor generation

The receptor surface model (RSM) proposed by Hahn
[16,17] was used to generate the surface of the virtual recep-
tor. A closed receptor model was generated using the van
der Waals and the Wyvill field functions, as implemented in
RSM.
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Surface descriptors computation

Using the virtual receptor, the ligand-receptor interaction
energies of the molecules 1-13 were evaluated in each and
every point of the virtual receptor with the RSM algorithm
as implemented in Cerius2. For each molecule we have com-
puted the steric, electrostatic, and total interaction energy
with every point on the surface of the virtual receptor.
Because the presence of a large number of descriptors
poorly correlated with the log(1/EC50) of the calcium chan-
nel agonists adds noise to the 3D QSAR equation and gives
an unstable PLS model, with poor prediction capacity, we
have applied in all experiments a simple descriptor selection
method. From the entire pool of structural descriptors, we
have selected for the PLS analysis a percentage of 3 % of
surface points with highest squared correlation coefficient r2.
All descriptors are zero centered and scaled to unit variance.

Partial least squares analyses

The mathematical analyses of the relationships between the
ligand-receptor interaction energies and the biological activ-
ity were done using the partial least squares algorithm from
Cerius2. Because the objective of a QSAR study is to derive
a model that is optimally predictive, we have estimated the
optimal number of components of the PLS model with the
leave-one-out cross-validation algorithm.

In table II we present the statistical indices of the CoRSA
models obtained in different experiments. The surface of the
virtual receptor was generated with all aligned molecules,
with the most active 5 compounds (molecules 5, 6, 7, 9 and
10), and from the most active compound 5 alone. For all
these three experiments, the receptor surface was generated
either with the van der Waals or Wyvill field functions.
Finally, the number of PLS components of the CoRSA
model was successively increased, and the leave-one-out
cross-validation was used to determine the optimal number

Table I. Chemical structures and experimental calcium channel
agonist activity, log(1/EC50)exp, of alkyl (or cycloalkyl) 1,4-dihy-
dro-2,6-dimethyl-3-nitro-4-pyridyl-5-pyridinecarboxylates.

No. R1 R2 log(1/EC50)exp

1 3-pyridyl ethyl 5.05  
2 4-pyridyl ethyl 5.19  
3 2-pyridyl MeOCH2CH2 5.01  
4 2-pyridyl iso-butyl 5.04  
5 3-pyridyl iso-butyl 5.76  
6 4-pyridyl iso-butyl 5.07  
7 4-pyridyl tert-butyl 5.55  
8 3-pyridyl cyclopentyl 5.48  
9 4-pyridyl cyclopentyl 5.37  

10 2-pyridyl cyclohexyl 5.43  
11 3-pyridyl cyclohexyl 5.56  
12 4-pyridyl cyclohexyl 5.31  
13 2-pyridyl iso-propyl 5.01 

Figure 1. View of all the aligned compounds 1-13.



of components. All these results, collected in table II, offer
the possibility to select the best combination for the CoRSA
model.

In a first test, the van der Waals field function was used
to generate the receptor surface from the 13 aligned com-
pounds, using the most active compound 5 as alignment tar-
get. The best prediction results are obtained with 5 PLS com-
ponents, when r2

cal = 0.970 and r2
pr = 0.846; the

corresponding calibration and prediction residuals are pre-
sented in table III, columns 3 and 4. In a second experiment,
the most active 5 compounds generated a van der Waals
receptor; the optimum number of PLS is again 5, with
r2

cal = 0.987 and r2
pr = 0.926; the calibration and prediction

residuals are given in table IV, columns 3 and 4. Although
in calibration the difference is not high, in prediction the
improvement is considerable. A third experiment considered
the van der Waals receptor obtained from the most active
compound 5, that gives r2

cal = 0.992 and r2
pr = 0.960 with

5 PLS components; compared with the previous experiments,
a significant improvement of the QSAR model is obtained,
as can be seen from the calibration and prediction residuals
given in table V, columns 3 and 4. In conclusion, for a recep-
tor surface generated with the van der Waals field function,
the best results are obtained when the virtual receptor is
complementary to the shape of the compound 5. In figure 2
we present the virtual receptor surface computed with the
van der Waals field function from the shape of compound 5.

The next set of experiments considered receptor surfaces
generated with the Wyvill field function. When the surface
was computed with all 13 aligned compounds, the optimum
number of PLS components is determined to be 5; the cal-
ibration and prediction residuals of this model, with
r2

cal = 0.975 and r2
pr = 0.910, are presented in table III,
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columns 5 and 6. With a Wyvill receptor obtained from the
most active 5 molecules (compounds 5, 6, 7, 9 and 10), the
CoRSA model with 3 components gives much worse results,
i.e. r2cal = 0.813 and r2

pr = 0.774; the calibration and pre-
diction residuals are given in table IV, columns 5 and 6.
Finally, when compound 5 was used to compute the Wyvill
receptor, we have obtained a fairly good CoRSA model with
3 components, having r2

cal = 0.903 and r2
pr = 0.849; the cor-

responding residuals are given in table V, columns 5 and 6.
The conclusion obtained from the virtual receptor con-
structed with a Wyvill field function is that the best CoRSA
model is obtained from all molecules in the data set. This
result is at variance with the previous result obtained with
the van der Waals field function. However, we can explain
this divergence by the differences in the two functions, as
can be seen by comparing Eqs. (1) and (2): the van der
Waals gives a “hard” receptor, very similar with the surface
area of the compounds that generate the receptor, while the
Wyvill function gives a “soft” receptor, a fuzzy representa-
tion of the molecular surface area, with much larger limits.

Conclusion

In this paper we defined a novel 3D-QSAR algorithm of the
comparative receptor surface analysis, CoRSA. The model
generates a virtual receptor model and computes ligand-
receptor energies that can be used as descriptors in a PLS
analysis. CoRSA is related to both receptor surface model
proposed by Hahn [16,17] and CoMFA proposed by Cramer
[6]: the virtual receptor is generated with the RSM algo-
rithm, while the 3D-QSAR models are generated with PLS,
like in CoMFA. We have to mention here that the RSM algo-
rithm can be replaced with other methods of computing the
surface of a virtual receptor. This approach can be applied
for the analysis of data sets whenever the activity informa-
tion is available but the structure of the receptor site is
unknown. The CoRSA model was tested on a set of 13 cal-
cium channel guinea pig left atrium agonists, giving good
calibration and prediction results. All the computations were
performed with various modules available in Cerius2.
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