Complexation equilibrium between iron(III) and \(N,N'-\text{bis}(2\text{-hydroxyphenylmethyl})\)-\(N,N'-\text{bis}(2\text{-pyridylmethyl})\)-1,2-ethanediameine

N. Hirayama\(^1\)*, N. Ichitani\(^1, **), N. Kuzuya\(^1\), K. Kubono\(^2\), H. Kokusen\(^3\) and T. Honjo\(^1\)

\(^1\) Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
\(^2\) Division of Natural Science, Osaka Kyoiku University, Asahigaoka, Kashitwara 582-8582, Japan
\(^3\) Department of Chemistry, Faculty of Education, Tokyo Gakugei University, Nukui-Kita-machi, Koganei 184-8501, Japan

Abstract. Complexation equilibrium between iron(III) and \(N,N'-\text{bis}(2\text{-hydroxyphenylmethyl})\)-\(N,N'-\text{bis}(2\text{-pyridylmethyl})\)-1,2-ethanediameine (H\(_2\)bbpen), a colorless hydrophobic divalent hexadentate ligand, and potential use of the ligand for the spectrophotometric determination of iron(III) in aqueous solution was investigated. In the pH range 2.0 – 3.0, Fe(III) forms stable 1:1 complex with H\(_2\)bbpen, and Fe(III) can be determined selectively as the purple Fe(bbpen)\(^+\) complex (\(\lambda_{\text{max}} = 560\) nm, \(\varepsilon = 4.3 \times 10^3\) dm\(^3\) mol\(^{-1}\) cm\(^{-1}\), \(\log b_p = 32.6 \pm 0.1\)). In this system, linear calibration range of Fe(III) was 5 \times 10^{-6} – 2 \times 10^{-4} mol dm\(^{-3}\) (0.3 – 12 \(\mu\)g cm\(^{-2}\)). Furthermore, most of foreign metal cations did not influence largely the determination of Fe(III).

Key words. \(N,N'-\text{bis}(2\text{-hydroxyphenylmethyl})\)-\(N,N'-\text{bis}(2\text{-pyridylmethyl})\)-1,2-ethanediameine – iron(III) – complexation – spectrophotometric determination.

Introduction

As well known, iron(III) forms colored complexes with many of phenol derivatives. On the basis of this nature, a lot of phenolic compounds have been developed as reagents for the spectrophotometric determination of Fe(III) [1]. However, most of them have several disadvantages: the reagents themselves often have absorption band in visible region because of their conjugation structures, and they often form colored complexes with not only Fe(III) but also other several metal cations.

Recently, Davis et al. [2] reported that catechol derivatives-Fe(III)-polyamines ternary complexes have far stronger absorption bands than respective catechol derivatives-Fe(III) binary complexes. This report suggests potential development of a phenolic polyelectrad ligand having nitrogen donors as a novel reagent for the determination of Fe(III).

The compound \(N,N'-\text{bis}(2\text{-hydroxyphenylmethyl})\)-\(N,N'-\text{bis}(2\text{-pyridylmethyl})\)-1,2-ethanediameine (H\(_2\)bbpen) [3,4] is a colorless hydrophobic divalent hexadentate ligand having two phenolate-oxygen, two amine-nitrogen and two pyridine-nitrogen donor atoms. Several researchers investigated complexation [3-9] and protonation [9,10] property of H\(_2\)bbpen or its analogues. In this study, we investigated complexation equilibrium between Fe(III) and H\(_2\)bbpen in aqueous solution. Furthermore, potential use of H\(_2\)bbpen as reagent for the spectrophotometric determination of Fe(III) was studied.

Experimental

Reagents and apparatus

The synthesis of H\(_2\)bbpen was performed according to the methods of Neves et al. [4] All other chemicals were reagent-grade materials and distilled deionized water was used throughout.

The absorption spectra of solutions at 20 ± 1 °C were recorded on a JASCO U-best 30 or a Shimadzu UV-160 UV-visible spectrophotometer in the range of 400 – 800 nm using 1 cm matched quartz cells. The pH values were obtained using a Hitachi-Horiba F-12 pH meter with a Horiba 6366-10D combined glass electrode.

Standard procedure

Into an aliquot of sample solution containing Fe(III), 1 cm\(^3\) of 3 \times 10^{-3} mol dm\(^{-3}\) H\(_2\)bbpen - 0.1 mol dm\(^{-3}\) nitric acid was added, after which the solution was diluted to 10 cm\(^3\) with 0.1 mol dm\(^{-3}\) sodium hydroxide and water and the pH was adjusted to 2.3. After leaving the solution for 2 h or immersing it in a water bath at 50 °C for 10 min, the absorbance was measured at 560 nm against pure water.

Results and discussion

Identification of Fe(III)-H\(_2\)bbpen complex

Figure 1 shows visible absorption spectrum of aqueous solution (pH 2.3) containing equimolar of Fe(III) and H\(_2\)bbpen.
Although neither individual solution of Fe(III) nor that of H$_2$bbpen has absorption in the range of 400-800 nm, showing the formation of Fe(III)-H$_2$bbpen complex. The absorbance of the Fe(III)-H$_2$bbpen solution was maximum and constant in the pH range 2.0-3.0. The decrease of the absorbance in lower pH seems to be originated from the protonation of H$_2$bbpen [9,10], and the slight decrease in higher pH may be caused by the hydrolysis of Fe(III) [11,12]. Since the shape of the absorption spectrum was not influenced by any of pH and concentrations of Fe(III) and H$_2$bbpen, it was found that single species is concerned in the coloration.

The metal:ligand ratio of the Fe(III)-H$_2$bbpen complex was determined as 1:1 by applying Job’s continuous variation method. Furthermore, this colored complex was extracted perfectly into chloroform with perchlorate as counter anion, while not extracted with nitrate or chloride. Extracted perfectly into chloroform with perchlorate as counter anion, while not extracted with nitrate or chloride.

The absorbance reached maximum value within 100 min at 20 °C, which was shortened to 5 min by warming the solution using a water bath at 50 °C. To the contrary, the maximized absorbance continued for more than a year. This surprising high stability seems to be originated from the enhancement of ligand-to-metal charge transfer (LMCT) from phenolate-O$^-$ to Fe$^{3+}$ by additional coordination of pyridine-N. In actual, the use of N$_2$N'-bis(2-hydroxyphenylmethyl)-1,2-ethanediamine (H$_2$bbpen) instead of H$_2$bbpen showed rapid fading of purple coloration by complexation within 1 min.

Fig. 1. Visible absorption spectrum of aqueous solution (pH 2.3) containing 1.67 × 10$^{-3}$ mol dm$^{-3}$ of Fe(III) and 1.67 × 10$^{-4}$ mol dm$^{-3}$ of H$_2$bbpen.

Fig. 2. Relationship between [log ([Fe(bbpen)$^+$]/[Fe$^{3+}$][H$_2$bbpen$^{2+}$]) and pH. Initial concentrations of Fe(III) and H$_2$bbpen were 1.67 × 10$^{-4}$ mol dm$^{-3}$. Measured wavelength was 560 nm. Solid line, of which the slope is 4, was obtained by the least square fit.

Potential use of H$_2$bbpen for the determination of iron(III)

On the optimized condition, the calibration graph was linear in the range of 5 × 10$^{-6}$ - 2 × 10$^{-4}$ mol dm$^{-3}$ (0.3 - 12 µg cm$^{-3}$) of Fe(III). The detection limit calculated by using the 3σ criterion was 3 × 10$^{-6}$ mol dm$^{-3}$ (0.2 µg cm$^{-3}$).

The effect of diverse foreign metal cations on the determination of Fe(III) was examined. The tolerance limit, which was defined as the amount causing an error ±3% in the absorbance, was more than 100-fold amount of Fe(III) for most of cations such as Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Mn$^{2+}$, Zn$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, Al$^{3+}$, Ga$^{3+}$ and Y$^{3+}$. Positive interference of Ni$^{2+}$ (tolerance limit = 20-fold), Cr$^{3+}$ (5-fold) and Cu$^{2+}$ (0.75-fold) is originated from the absorption of their hydrated ions themselves and it is convinced that the interference can be minimized by using sample solution itself as blank instead of pure water. In addition, Co$^{2+}$ (tolerance limit = 2.5-fold) seemed to be oxidized partly to Co$^{3+}$ forming colored complex Co(bbpen)$^+$ in this system [7]. Furthermore, c.a. 20% of Fe$^{3+}$ was oxidized and formed unexpected Fe(bbpen)$^+$ complex and the tendency was enhanced on pH > 2.5.

This method was applied to the determination of Fe(III) in tap water. Although its Fe(III) content was lower than 0.3 µg cm$^{-3}$ (determined as 0.22 µg cm$^{-3}$ by ICP-AES), that of the sample adding 1.50 µg cm$^{-3}$ of Fe(III) was measured as 1.77 ± 0.01 µg cm$^{-3}$ (n = 8), agreed with that by ICP-AES (1.78 µg cm$^{-3}$).

This system has some room for improvement. Particularly, further derivatization of the ligand is very important to enhance the absorption of its Fe(III)-complex and to accelerate the complexation reaction, which are necessary for the combination of this system with high-performance automated analysis such as flow-injection analysis.

Acknowledgement

This study was financially supported in part by Grant-in-Aid for Scientific Research No. 08740572 from the Ministry of Education, Science, Sports and Culture, Japan.
References